Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1264323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155964

RESUMO

The constant appearance of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs) has jeopardized the protective capacity of approved vaccines against coronavirus disease-19 (COVID-19). For this reason, the generation of new vaccine candidates adapted to the emerging VoCs is of special importance. Here, we developed an optimized COVID-19 vaccine candidate using the modified vaccinia virus Ankara (MVA) vector to express a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, containing 3 proline (3P) substitutions in the S protein derived from the beta (B.1.351) variant, termed MVA-S(3Pbeta). Preclinical evaluation of MVA-S(3Pbeta) in head-to-head comparison to the previously generated MVA-S(3P) vaccine candidate, expressing a full-length prefusion-stabilized Wuhan S protein (with also 3P substitutions), demonstrated that two intramuscular doses of both vaccine candidates fully protected transgenic K18-hACE2 mice from a lethal challenge with SARS-CoV-2 beta variant, reducing mRNA and infectious viral loads in the lungs and in bronchoalveolar lavages, decreasing lung histopathological lesions and levels of proinflammatory cytokines in the lungs. Vaccination also elicited high titers of anti-S Th1-biased IgGs and neutralizing antibodies against ancestral SARS-CoV-2 Wuhan strain and VoCs alpha, beta, gamma, delta, and omicron. In addition, similar systemic and local SARS-CoV-2 S-specific CD4+ and CD8+ T-cell immune responses were elicited by both vaccine candidates after a single intranasal immunization in C57BL/6 mice. These preclinical data support clinical evaluation of MVA-S(3Pbeta) and MVA-S(3P), to explore whether they can diversify and potentially increase recognition and protection of SARS-CoV-2 VoCs.


Assuntos
COVID-19 , Vacinas , Camundongos , Animais , Humanos , SARS-CoV-2/genética , Vírus Vaccinia/genética , Vacinas contra COVID-19 , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos Endogâmicos C57BL
2.
Antiviral Res ; 220: 105760, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992765

RESUMO

Unravelling the molecular mechanism of COVID-19 vaccines through transcriptomic pathways involved in the host response to SARS-CoV-2 infection is key to understand how vaccines work, and for the development of optimized COVID-19 vaccines that can prevent the emergence of SARS-CoV-2 variants of concern (VoCs) and future outbreaks. In this study, we investigated the effects of vaccination with a modified vaccinia virus Ankara (MVA)-based vector expressing the full-length SARS-CoV-2 spike protein (MVA-S) on the lung transcriptome from susceptible K18-hACE2 mice after SARS-CoV-2 infection. One dose of MVA-S regulated genes related to viral infection control, inflammation processes, T-cell response, cytokine production and IFN-γ signalling. Down-regulation of Rhcg and Tnfsf18 genes post-vaccination with one and two doses of MVA-S may represent a mechanism for controlling infection immunity and vaccine-induced protection. One dose of MVA-S provided partial protection with a distinct lung transcriptomic profile to healthy animals, while two doses of MVA-S fully protected against infection with a transcriptomic profile comparable to that of non-vaccinated healthy animals. This suggests that the MVA-S booster generates a robust and rapid antigen-specific immune response preventing virus infection. Notably, down-regulation of Atf3 and Zbtb16 genes in mice vaccinated with two doses of MVA-S may contribute to vaccine control of innate immune system and inflammation processes in the lungs during SARS-CoV-2 infection. This study shows host transcriptomic mechanisms likely involved in the MVA-S vaccine-mediated immune response against SARS-CoV-2 infection, which could help in improving vaccine dose assessment and developing novel, well-optimized SARS-CoV-2 vaccine candidates against prevalent or emerging VoCs.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , Vírus Vaccinia/genética , Vacinas contra COVID-19/genética , Anticorpos Antivirais , COVID-19/prevenção & controle , SARS-CoV-2/genética , Perfilação da Expressão Gênica , Imunidade , Pulmão , Inflamação
3.
Front Immunol ; 14: 1163159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920464

RESUMO

The development of novel optimized vaccines against coronavirus disease 2019 (COVID-19) that are capable of controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the appearance of different variants of concern (VoC) is needed to fully prevent the transmission of the virus. In the present study, we describe the enhanced immunogenicity and efficacy elicited in hamsters by a modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein [termed MVA-S(3P)]. Hamsters vaccinated with one or two doses of MVA-S(3P) developed high titers of S-binding IgG antibodies and neutralizing antibodies against the ancestral Wuhan SARS-CoV-2 virus and VoC beta, gamma, and delta, as well as against omicron, although with a somewhat lower neutralization activity. After SARS-CoV-2 challenge, vaccinated hamsters did not lose body weight as compared to matched placebo (MVA-WT) controls. Consistently, vaccinated hamsters exhibited significantly reduced viral RNA in the lungs and nasal washes, and no infectious virus was detected in the lungs in comparison to controls. Furthermore, almost no lung histopathology was detected in MVA-S(3P)-vaccinated hamsters, which also showed significantly reduced levels of proinflammatory cytokines in the lungs compared to unvaccinated hamsters. These results reinforce the use of MVA-S(3P) as a vaccine candidate against COVID-19 in clinical trials.


Assuntos
COVID-19 , Animais , Cricetinae , COVID-19/prevenção & controle , SARS-CoV-2 , Vírus Vaccinia/genética , Anticorpos Neutralizantes
4.
Adv Sci (Weinh) ; 10(34): e2304818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863812

RESUMO

Administration of neutralizing antibodies (nAbs) has proved to be effective by providing immediate protection against SARS-CoV-2. However, dual strategies combining virus neutralization and immune response stimulation to enhance specific cytotoxic T cell responses, such as dendritic cell (DC) cross-priming, represent a promising field but have not yet been explored. Here, a broadly nAb, TNT , are first generated by grafting an anti-RBD biparatopic tandem nanobody onto a trimerbody scaffold. Cryo-EM data show that the TNT structure allows simultaneous binding to all six RBD epitopes, demonstrating a high-avidity neutralizing interaction. Then, by C-terminal fusion of an anti-DNGR-1 scFv to TNT , the bispecific trimerbody TNT DNGR-1 is generated to target neutralized virions to type 1 conventional DCs (cDC1s) and promote T cell cross-priming. Therapeutic administration of TNT DNGR-1, but not TNT , protects K18-hACE2 mice from a lethal SARS-CoV-2 infection, boosting virus-specific humoral responses and CD8+ T cell responses. These results further strengthen the central role of interactions with immune cells in the virus-neutralizing antibody activity and demonstrate the therapeutic potential of the Fc-free strategy that can be used advantageously to provide both immediate and long-term protection against SARS-CoV-2 and other viral infections.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Camundongos , Animais , Anticorpos Neutralizantes/uso terapêutico , Linfócitos T Citotóxicos , SARS-CoV-2 , Apresentação Cruzada , Células Dendríticas
5.
J Mol Biol ; 435(15): 168173, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301278

RESUMO

Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of Acquired Immunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.


Assuntos
Doenças Transmissíveis Emergentes , Poxviridae , Vacinas Virais , Viroses , Animais , Humanos , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/virologia , COVID-19/prevenção & controle , Vetores Genéticos , Poxviridae/imunologia , Varíola/prevenção & controle , Vacinas Atenuadas , Vírus Vaccinia/genética , Vacinas Virais/genética , Vacinas Virais/imunologia , Viroses/prevenção & controle , Viroses/virologia , Zika virus , Infecção por Zika virus
7.
Nat Neurosci ; 26(2): 226-238, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624276

RESUMO

Vaccines against SARS-CoV-2 have been shown to be safe and effective but their protective efficacy against infection in the brain is yet unclear. Here, in the susceptible transgenic K18-hACE2 mouse model of severe coronavirus disease 2019 (COVID-19), we report a spatiotemporal description of SARS-CoV-2 infection and replication through the brain. SARS-CoV-2 brain replication occurs primarily in neurons, leading to neuronal loss, signs of glial activation and vascular damage in mice infected with SARS-CoV-2. One or two doses of a modified vaccinia virus Ankara (MVA) vector expressing the SARS-CoV-2 spike (S) protein (MVA-CoV2-S) conferred full protection against SARS-CoV-2 cerebral infection, preventing virus replication in all areas of the brain and its associated damage. This protection was maintained even after SARS-CoV-2 reinfection. These findings further support the use of MVA-CoV2-S as a promising vaccine candidate against SARS-CoV-2/COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Camundongos Transgênicos , Vacinas contra COVID-19 , Encéfalo
8.
Front Immunol ; 13: 1001951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311758

RESUMO

Various species of the SARS-CoV-2 host cell receptor, the angiotensin-converting enzyme 2 (ACE2), are present in serum, which may result from virus entry and subsequent proteolytic processing of the membrane receptor. We have recently demonstrated changes of particular ACE2 species in virus infected humans, either cleaved fragments or circulating full-length species. Here, we further explore the potential of serum ACE2 as a biomarker to test SARS-CoV-2 infection and vaccine efficacy in virus susceptible transgenic K18-hACE2 mice expressing human ACE2. First, in serum samples derived from K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2, we observed an increase in the levels of cleaved ACE2 fragment at day 2 post-challenge, which may represent the subsequent proteolytic processing through virus entry. These elevated levels were maintained until the death of the animals at day 6 post-challenge. The circulating full-length ACE2 form displayed a sizable peak at day 4, which declined at day 6 post-challenge. Noticeably, immunization with two doses of the MVA-CoV2-S vaccine candidate prevented ACE2 cleaved changes in serum of animals challenged with a lethal dose of SARS-CoV-2. The efficacy of the MVA-CoV2-S was extended to vaccinated mice after virus re-challenge. These findings highlight that ACE2 could be a potential serum biomarker for disease progression and vaccination against SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Humanos , Camundongos , Biomarcadores , COVID-19/prevenção & controle , Camundongos Transgênicos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Eficácia de Vacinas
9.
Front Immunol ; 13: 995235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172368

RESUMO

Current coronavirus disease-19 (COVID-19) vaccines are administered by the intramuscular route, but this vaccine administration failed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection in the upper respiratory tract, mainly due to the absence of virus-specific mucosal immune responses. It is hypothesized that intranasal (IN) vaccination could induce both mucosal and systemic immune responses that blocked SARS-CoV-2 transmission and COVID-19 progression. Here, we evaluated in mice IN administration of three modified vaccinia virus Ankara (MVA)-based vaccine candidates expressing the SARS-CoV-2 spike (S) protein, either the full-length native S or a prefusion-stabilized [S(3P)] protein; SARS-CoV-2-specific immune responses and efficacy were determined after a single IN vaccine application. Results showed that in C57BL/6 mice, MVA-based vaccine candidates elicited S-specific IgG and IgA antibodies in serum and bronchoalveolar lavages, respectively, and neutralizing antibodies against parental and SARS-CoV-2 variants of concern (VoC), with MVA-S(3P) being the most immunogenic vaccine candidate. IN vaccine administration also induced polyfunctional S-specific Th1-skewed CD4+ and cytotoxic CD8+ T-cell immune responses locally (in lungs and bronchoalveolar lymph nodes) or systemically (in spleen). Remarkably, a single IN vaccine dose protected susceptible K18-hACE2 transgenic mice from morbidity and mortality caused by SARS-CoV-2 infection, with MVA-S(3P) being the most effective candidate. Infectious SARS-CoV-2 viruses were undetectable in lungs and nasal washes, correlating with high titers of S-specific IgGs and neutralizing antibodies against parental SARS-CoV-2 and several VoC. Moreover, low histopathological lung lesions and low levels of pro-inflammatory cytokines in lungs and nasal washes were detected in vaccinated animals. These results demonstrated that a single IN inoculation of our MVA-based vaccine candidates induced potent immune responses, either locally or systemically, and protected animal models from COVID-19. These results also identified an effective vaccine administration route to induce mucosal immunity that should prevent SARS-CoV-2 host-to-host transmission.


Assuntos
COVID-19 , Vacinas Virais , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Citocinas , Imunoglobulina A , Imunoglobulina G , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Vírus Vaccinia/genética
10.
Antiviral Res ; 207: 105416, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113629

RESUMO

Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavivirus/genética , Humanos , Hidrazonas , Hidroxiureia/análogos & derivados , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Viral/genética , Ubiquitinas/metabolismo , Proteína com Valosina/metabolismo , Replicação Viral
11.
Front Immunol ; 13: 845887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371043

RESUMO

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Assuntos
COVID-19 , Vírus Vaccinia , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vírus Vaccinia/genética
12.
Front Immunol ; 13: 845969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371064

RESUMO

To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.


Assuntos
COVID-19 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vírus Vaccinia/genética
13.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337151

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus whose infection in pregnant women is associated with a spectrum of birth defects, which are together referred as Congenital Zika Syndrome. In addition, ZIKV can also induce Guillain-Barré syndrome, which is an autoimmune disease with neurological symptoms. The recent description of the first local infections of ZIKV in the European continent together with the expansion of one of its potential vectors, the Asian tiger mosquito (Aedes albopictus), invite us to be prepared for future outbreaks of ZIKV in this geographical region. However, the antigenic similarities of ZIKV with other flaviviruses can lead to an immune cross-reactivity with other circulating flaviviruses inducing, in some cases, flavivirus-disease exacerbation by antibody-dependent enhancement (ADE) of infection, which is a major concern for ZIKV vaccine development. Until now, West Nile virus (WNV) is the main medically relevant flavivirus circulating in the Mediterranean Basin. Therefore, anticipating the potential scenario of emergency vaccination against ZIKV in areas of Europe where WNV is endemic, in this investigation, we have evaluated the cross-reactivity between WNV and our previously developed ZIKV vaccine candidate based on modified vaccinia virus Ankara (MVA) vector expressing ZIKV structural proteins (MVA-ZIKV). To this end, mice were first immunized with MVA-ZIKV, subsequently challenged with WNV, and then, the ZIKV- and WNV-specific immune responses and protection against WNV were evaluated. Our results indicate low cross-reactivity between the MVA-ZIKV vaccine candidate and WNV and absence of ADE, supporting the safety of this ZIKV vaccine candidate in areas where the circulation of WNV is endemic.

14.
NPJ Vaccines ; 7(1): 17, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140227

RESUMO

Two doses of the MVA-CoV2-S vaccine candidate expressing the SARS-CoV-2 spike (S) protein protected K18-hACE2 transgenic mice from a lethal dose of SARS-CoV-2. This vaccination regimen prevented virus replication in the lungs, reduced lung pathology, and diminished levels of pro-inflammatory cytokines. High titers of IgG antibodies against S and receptor-binding domain (RBD) proteins and of neutralizing antibodies were induced against parental virus and variants of concern, markers that correlated with protection. Similar SARS-CoV-2-specific antibody responses were observed at prechallenge and postchallenge in the two-dose regimen, while the single-dose treatment does not avoid vaccine breakthrough infection. All vaccinated animals survived infection and were also protected to SARS-CoV-2 reinfection. Furthermore, two MVA-CoV2-S doses induced long-term memory S-specific humoral and cellular immune responses in C57BL/6 mice, 6 months after immunization. The efficacy and immunological benefits of the MVA-CoV2-S vaccine candidate against COVID-19 supports its consideration for human clinical trials.

15.
Front Immunol ; 13: 1044025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761163

RESUMO

Current vaccines against SARS-CoV-2, based on the original Wuhan sequence, induce antibodies with different degrees of cross-recognition of new viral variants of concern. Despite potent responses generated in vaccinated and infected individuals, the Omicron (B.1.1.529) variant causes breakthrough infections, facilitating viral transmission. We previously reported a vaccine based on a cyclic peptide containing the 446-488 S1 sequence (446-488cc) of the SARS-CoV-2 spike (S) protein from Wuhan isolate. To provide the best immunity against Omicron, here we compared Omicron-specific immunity induced by a Wuhan-based 446-488cc peptide, by a Wuhan-based recombinant receptor-binding domain (RBD) vaccine and by a new 446-488cc peptide vaccine based on the Omicron sequence. Antibodies induced by Wuhan peptide 446-488cc in three murine strains not only recognized the Wuhan and Omicron 446-488 peptides similarly, but also Wuhan and Omicron RBD protein variants. By contrast, antibodies induced by the Wuhan recombinant RBD vaccine showed a much poorer cross-reactivity for the Omicron RBD despite similar recognition of Wuhan and Omicron peptide variants. Finally, although the Omicron-based 446-488cc peptide vaccine was poorly immunogenic in mice due to the loss of T cell epitopes, co-immunization with Omicron peptide 446-488cc and exogenous T cell epitopes induced strong cross-reactive antibodies that neutralized Omicron SARS-CoV-2 virus. Since mutations occurring within this sequence do not alter T cell epitopes in humans, these results indicate the robust immunogenicity of 446-488cc-based peptide vaccines that induce antibodies with a high cross-recognition capacity against Omicron, and suggest that this sequence could be included in future vaccines targeting the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Epitopos de Linfócito T , COVID-19/prevenção & controle , Vacinas de Subunidades , Anticorpos
16.
J Proteome Res ; 21(1): 164-171, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34937342

RESUMO

Adaptive cellular and humoral immune responses to infectious agents require previous recognition of pathogenic peptides bound to human leukocyte antigen (HLA) class II molecules exposed on the surface of the professional antigen-presenting cells. Knowledge of how these peptide ligands are generated is essential to understand the basis for CD4+ T-cell-mediated immunity and tolerance. In this study, a high-throughput mass spectrometry analysis was used to identify more than 16,000 cell peptides bound to several HLA-DR and -DP class II molecules isolated from large amounts of uninfected and virus-infected human cells (ProteomeXchange accession: PXD028006). The analysis of the 1808 parental proteins containing HLA class II ligands revealed that these cell proteins were more acidic, abundant, and highly connected but less hydrophilic than non-parental proteomes. Therefore, the percentage of acidic residues was increased and hydroxyl and polar residues were decreased in the parental proteins for the HLA class II ligandomes versus the non-parental proteomes. This definition of the properties shared by parental proteins that constitute the source of the HLA class II ligandomes can serve as the basis for the development of bioinformatics tools to predict proteins that are most likely recognized by the immune system through the CD4+ helper T lymphocytes in both autoimmunity and infection.


Assuntos
Antígenos HLA , Antígenos HLA-DR , Linfócitos T CD4-Positivos , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ponto Isoelétrico , Pais
17.
Front Immunol ; 12: 748103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867974

RESUMO

COVID-19-specific vaccines are efficient prophylactic weapons against SARS-CoV-2 virus. However, boosting innate responses may represent an innovative way to immediately fight future emerging viral infections or boost vaccines. MV130 is a mucosal immunotherapy, based on a mixture of whole heat-inactivated bacteria, that has shown clinical efficacy against recurrent viral respiratory infections. Herein, we show that the prophylactic intranasal administration of this immunotherapy confers heterologous protection against SARS-CoV-2 infection in susceptible K18-hACE2 mice. Furthermore, in C57BL/6 mice, prophylactic administration of MV130 improves the immunogenicity of two different COVID-19 vaccine formulations targeting the SARS-CoV-2 spike (S) protein, inoculated either intramuscularly or intranasally. Independently of the vaccine candidate and vaccination route used, intranasal prophylaxis with MV130 boosted S-specific responses, including CD8+-T cell activation and the production of S-specific mucosal IgA antibodies. Therefore, the bacterial mucosal immunotherapy MV130 protects against SARS-CoV-2 infection and improves COVID-19 vaccines immunogenicity.


Assuntos
Bactérias/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Administração através da Mucosa , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Imunidade Heteróloga , Imunidade Inata , Imunogenicidade da Vacina , Imunoglobulina A/imunologia , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/imunologia , Camundongos , Vacinação
18.
Biomedicines ; 9(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34572308

RESUMO

There is a need to develop a highly effective vaccine against the emerging chikungunya virus (CHIKV), a mosquito-borne Alphavirus that causes severe disease in humans consisting of acute febrile illness, followed by chronic debilitating polyarthralgia and polyarthritis. In this review, we provide a brief history of the development of the first poxvirus vaccines that led to smallpox eradication and its implications for further vaccine development. As an example, we summarize the development of vaccine candidates based on the modified vaccinia virus Ankara (MVA) vector expressing different CHIKV structural proteins, paying special attention to MVA-CHIKV expressing all of the CHIKV structural proteins: C, E3, E2, 6K and E1. We review the characterization of innate and adaptive immune responses induced in mice and nonhuman primates by the MVA-CHIKV vaccine candidate and examine its efficacy in animal models, with promising preclinical findings needed prior to the approval of human clinical trials.

19.
Emerg Microbes Infect ; 10(1): 1441-1456, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34213405

RESUMO

Zika virus (ZIKV) is a mosquito-borne pathogen with public health importance due to the high risk of its mosquito vector dissemination and the severe neurological and teratogenic sequelae associated with infection. Vaccines with broad immune specificity and control against this re-emerging virus are needed. Here, we described that mice immunized with a priming dose of a DNA plasmid mammalian expression vector encoding ZIKV prM-E antigens (DNA-ZIKV) followed by a booster dose of a modified vaccinia virus Ankara (MVA) vector expressing the same prM-E ZIKV antigens (MVA-ZIKV) induced broad, polyfunctional and long-lasting ZIKV-specific CD4+ and CD8+ T-cell immune responses, with high levels of CD4+ T follicular helper cells, together with the induction of neutralizing antibodies. All those immune parameters were significantly stronger in the heterologous DNA-ZIKV/MVA-ZIKV immunization group compared to the homologous prime/boost immunizations regimens. Collectively, these results provided an optimized immunization protocol able to induce high levels of ZIKV-specific T-cell responses, as well as neutralizing antibodies and reinforce the combined use of DNA-based vectors and MVA-ZIKV as promising prophylactic vaccination schedule against ZIKV.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vírus Vaccinia/genética , Vírus Vaccinia/metabolismo , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
20.
FASEB J ; 35(8): e21745, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34191346

RESUMO

Studies are needed to identify useful biomarkers to assess the severity and prognosis of COVID-19 disease, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus. Here, we examine the levels of various plasma species of the SARS-CoV-2 host receptor, the angiotensin-converting enzyme 2 (ACE2), in patients at different phases of the infection. Human plasma ACE2 species were characterized by immunoprecipitation and western blotting employing antibodies against the ectodomain and the C-terminal domain, using a recombinant human ACE2 protein as control. In addition, changes in the cleaved and full-length ACE2 species were also examined in serum samples derived from humanized K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2. ACE2 immunoreactivity was present in human plasma as several molecular mass species that probably comprise truncated (70 and 75 kDa) and full-length forms (95, 100, 130, and 170 kDa). COVID-19 patients in the acute phase of infection (n = 46) had significantly decreased levels of ACE2 full-length species, while a truncated 70-kDa form was marginally higher compared with non-disease controls (n = 26). Levels of ACE2 full-length species were in the normal range in patients after a recovery period with an interval of 58-70 days (n = 29), while the 70-kDa species decreased. Levels of the truncated ACE2 species served to discriminate between individuals infected by SARS-CoV-2 and those infected with influenza A virus (n = 17). In conclusion, specific plasma ACE2 species are altered in patients with COVID-19 and these changes normalize during the recovery phase. Alterations in ACE2 species following SARS-CoV-2 infection warrant further investigation regarding their potential usefulness as biomarkers for the disease process and to asses efficacy during vaccination.


Assuntos
Enzima de Conversão de Angiotensina 2/sangue , COVID-19/sangue , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/líquido cefalorraquidiano , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/urina , Biomarcadores/sangue , Química Encefálica , Colo/química , Feminino , Humanos , Fígado/química , Masculino , Pessoa de Meia-Idade , Saliva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...